Autolyse: Unterschied zwischen den Versionen

Aus Organspende-Wiki
Zur Navigation springen Zur Suche springen
Zeile 41: Zeile 41:
{{Zitat|Diese neue Möglichkeit einer Langzeitbeatmung von Bewusstlosen hat zu einer neuropathologischen Besonderheit geführt, die vorher in dieser Form nicht bekannt war. Während einer längeren intensivmedizinischen Beatmungsbehandlung kann allen Organen oder Gewebeformationen, dieaußerhalb der knöchernen Umhüllung durch die Schädelkapsel (oder den Wirbelkanal) liegen, der maschinell gespendete Sauerstoff zukommen, wodurch die Organe auch bei fehlender Eigenatmung vital bleiben. Dagegen kann infolge einer krankhaften Druckerhöhung innerhalb des Schädels (oder des Wirbelkanals) in eben diese Kompartimente kein Blut mehr gelangen. In der Folge zersetzt und verflüssigt sich das Zentralnervensystem bereits, während der 'Patient' noch beatmet in seinem Intensivbett liegt.<br>
{{Zitat|Diese neue Möglichkeit einer Langzeitbeatmung von Bewusstlosen hat zu einer neuropathologischen Besonderheit geführt, die vorher in dieser Form nicht bekannt war. Während einer längeren intensivmedizinischen Beatmungsbehandlung kann allen Organen oder Gewebeformationen, dieaußerhalb der knöchernen Umhüllung durch die Schädelkapsel (oder den Wirbelkanal) liegen, der maschinell gespendete Sauerstoff zukommen, wodurch die Organe auch bei fehlender Eigenatmung vital bleiben. Dagegen kann infolge einer krankhaften Druckerhöhung innerhalb des Schädels (oder des Wirbelkanals) in eben diese Kompartimente kein Blut mehr gelangen. In der Folge zersetzt und verflüssigt sich das Zentralnervensystem bereits, während der 'Patient' noch beatmet in seinem Intensivbett liegt.<br>
Vorstufen zu dieser Hirnverflüssigung sind die starke Ansäuerung des Liquors bzw. Konzentrationsanstiege von Laktat bis weit oberhalb von 9 mmol/l (Überlebende: < 3 mmol/l). Im Extremfall entwickeln sich Zustände, in denen bei der Obduktion nach der Öffnung des Schädels üerhaupt kein Gehirn mehr vorgefunden wurde, etwa weil es im weitestgehenden Falle in den Wirbelkanal oder, bei der Leichenöffnung, sonst wohin geflossen ist.<ref>Dag Moskopp: Hirntod, 73.</ref>}}
Vorstufen zu dieser Hirnverflüssigung sind die starke Ansäuerung des Liquors bzw. Konzentrationsanstiege von Laktat bis weit oberhalb von 9 mmol/l (Überlebende: < 3 mmol/l). Im Extremfall entwickeln sich Zustände, in denen bei der Obduktion nach der Öffnung des Schädels üerhaupt kein Gehirn mehr vorgefunden wurde, etwa weil es im weitestgehenden Falle in den Wirbelkanal oder, bei der Leichenöffnung, sonst wohin geflossen ist.<ref>Dag Moskopp: Hirntod, 73.</ref>}}
Im "Handbuch gerichtliche Medizin" von Bernd Brinkmann und Burkhard Madea (Hg.) heist es zur Autolyse des Gehirns nach Hirntod auf Seite 414:
{{Zitat|Man hat für diese Läsionen den Ausdruck "Respiratorgehirn" eingeführt. ... Die Termini "Hirntod," "cerebral death," "brain death," "mort du cerveau" beziehen sich mehr auf einen pathomorphologischen Zustand.<br>
'''Makroskopischer Befund'''<br>
Bei der Eröffnung der straff gespannten Dura mater drängt sich das weiche, geschwollene, grau-grün verfärbte Hirngewebe prolapsartig nach außen. Das Gehirngewicht ist gewöhnlich höher als in einer Kontrollgruppe. Die Konsistenz des Hirngewebes ist herabgesetzt, das Gewebe fühlt sich weich und gelatinös an, es reißt leicht ein, v.a. bei der Entnahme aus der Schädelhöhle. Die starke Blutfülle der Gefäße ist augenfällig. Das Hirngewebe ist geschwollen, ausgeprägte Hirndruckzeichen liegen in der Regel vor. Der [[infratentorielle Hirnschädigung|infratentorielle]] Teil des Hirngewebes ist besonders weich und verletzlich. In manchen Fällen besteht das deformierte Hirngewebe aus einer weichen, fast zerfließenden Masse.<br>
Die Fixation des Gehirns in Formaldehyd führt nicht zur üblichen Härtung, das Gewebe bleibt weich-gelatinös und reißt leicht ein. Die übliche Zerlegung des Großhirns in Frontalscheiben bereitet deshalb Schwierigkeiten, die Gewebeblöcke haben eine feuchte und spiegelnde Oberfläche. Die Markrindengrenze stellt sich undeutlich dar, ... <br>
Zeichen der primären traumatischen Läsionen können vorhanden beblieben sein, meist überwiegen jedoch ausgeprägte autolytische Alterationen. ... Eine Korrelation zwischen der Länge er künstlichen Beatmung und dem Ausmaß der autolytischen Veränderung besteht i. Allg. nicht.<br>
Bei einigen Beobachtungen von [298] lag eine totale Nekrose des Gehirns, verbunden it einer subtotalen Nekkrose des Rückenmarks, vor, sodass man vom Tod des [[ZNS]] sprechen konnte. In der Regel besteht zwischen dem autolytischen Gehirn und dem fast intakten Rückenmark ein ins Auge fallender Kontrast.<br>
'''Mikroskopischer Befund'''<br>
Die histologische Untersuchung des Gehirns ist wegen des Zerfalls des Hirngewebes sehr schwierig. Es kann zu einer völligen Desintergration des Hirngewebes mit zellfreien Arealen kommen. Die Schichtung des Kortex ist i.Allg. erkennbar, die schwerste Gewebsveränderungen finden sich meist in tieferen Rindenschichten. Die Körnerzellschicht des Kleinhirns zeigt oft einen totalen Untergang bei stellenweise noch erhaltenen Purkinje-Zellen. In einigen Anteilen des Gehirns können noch Reste ischämscher Nervenzellschäden vorhanden sein.<ref>Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003, 414.</ref>
Auf Seite 415 heißt es weiter:
Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003.
Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003.
Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003.
Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003.


=== Diskussion ===
=== Diskussion ===

Version vom 29. Mai 2017, 21:43 Uhr

Autolyse (Selbstauflösung) ist der Abbau von Organprotein durch frei gewordene Zellenzyme. (Pschyrembel, 159) Cathepsine und andere Peptidasen sind daran wesentlich beteiligt.

Die 3 Phasen der Selbstauflösung des Gehirns

Liegt ein Hirntoter mehrere Tage auf der Intensivstation, löst sich sein Gehirn auf. Dies geschieht in 3 Phasen, wobei die einzelnen Übergänge fließend sind. D.h. während sich die einen Gehirnzellen noch in der einen Phase befinden, sind andere Gehirnzellen bereits in der nächsten Phase:

Absterben der Gehirnzellen

Durch den Sauerstoffmangel sterben die Gehirnzellen ab. D.h. sie besitzen keinen Stoffwechsel.
So wenig, wie ein Toter mit sicheren Todeszeichen nicht reanimiert werden kann, so wenig können die abgestorbenen Gehirnzellen reanimiert werden.[Anm. 1] (siehe auch: Reanimation von Hirntoten)

Vollsaugen mit Flüssigkeit

Abgestorbene Gehirnzellen saugen sich mit Flüssigkeit voll. Das ist kein Zeichen von Stoffwechsel, sondern ist ein rein physikalischer Vorgang von toten Zellen. Wie Zeitungspapier das auf sie gefallenen Wassertropfen aufsaugt, so saugen die abgestorbenen Gehirnzellen Flüssigkeit auf und werden richtig prall.
Da dies nicht nur eine Gehirnzelle macht, sondern alle abgestorbenen Gehirnzellen, steigt der Druck im Kopf, "Hirndruck" genannt. Der Anstieg des Hirndrucks beschleunigt das Absterben der noch lebenden Gehirnzellen, damit steigt der Hirndruck weiter an.
Der das Gehirn schützende Schädelknochen gibt dem Druck nicht nach. Der einzige Ausweg der Ausdehnung ist zum Rückenmark hin. Somit wird der Hirnstamm in den Kanal des Rückenmark gepresst, was die Überlebenschance der Gehirnzellen im Hirnstamm weiter mindert.
So setzt sich das Sterben der Gehirnzellen weiter fort.

Platzen der Gehirnzellen

Die Zellmembran der Gehirnzellen hält nicht über viele Tage diesen Zustand des Prallseins aus. Die Zellmembran platzt nach wenigen Tagen auf. So ist nach einigen Tagen bei Aufnahmen mit einem MRT keine Gehirnstruktur mehr feststellbar.

Dieser Prozess[Anm. 2] der Gehirnzellen läuft bei jedem Hirntoten ab. Vielfache Obduktionen haben bewiesen, was bildgebende Diagnostik (z.B. MRT) aufgezeigt hat: Nach Tagen des Hirntods hat sich das Gehirn aufgelöst. Die Gehirnzellen sind nicht nur tot, sondern zerplatzt. Wo einst das Gehirn als geistiges Wunderwerk der Natur war, ist jetzt nur ein Gemisch aus Blut, Zellmembran, Zellkern und Zellflüssigkeit.

Dag Moskopp schreibt in seinem Buch "Hirntod" auf Seite 73 hierzu: "Jeder, der bereit ist, eine Viertelstunde lang den Gestank der Fäulnis bei der Teilnahme an einer solchen Obduktion zu ertragen, kann sich unter Umständen langweilige theoretisierende Lektüre ersparen. ... Es ist aus vielen Gründen (Weltanschauung, Ressourcen, Infektiologie) geradezu geboten, derartige Zustände auf Intensivstationen angemessen rasch zu erkennen, den Hirntod festzustellen und die Behandlung zu beenden oder ggf. dem Gebot der Organspende - gemäß des mutmaßlichen oder dokumentierten Willens des Hirntoten - nachzugehen."

Geschichte der Feststellung der Selbstauflösung des Gehirns

Die Geschichte der Feststellung der Selbstauflösung des Gehirns beginnt mit der Einführung der künstlichen Beatmung:

  • 1953 berichteten die dänischen Neurochirurgen John Riishede und Sven Ethelberg von 5 Fällen fehlender, nicht behebbarer Füllung von Arterien, die von der A. carotis interna abhängen.[1]
  • 1956 publizierten die Schweden Stig Löfstedt und Gösta von Reis ähnliche Befunde. [1][Anm. 3]
  • 1950er versuchte Pierre Wertheimer und sein Team bei der HTD Elektroden für das EEG in das Gehirn zu schieben. In den Berichten heißt es, dass Gehirnmasse wie Schleim aus den Bohrlöchern tropfte.[1]
  • 1959 beschrieben Pierre Mollaret (1898-1987) und Maurice Goulon (1919-2008) erstmals den Begriff "Coma depassé", den sie an 23 Hirntoten durch Obduktionen festgestellt hatten.[2]
  • 1987 beschrieben bei direkten Untersuchungen diffuse Erweichungen und Nekrose des Gehirns (diffuse softening and necrosis of brain).[3]
  • 2014: Suzuki u.a. stellten an 12 hirntoten Kindern fest, dass die Feststellung des Hirntodes mit den Autopsie-Daten (Nekrose des Gehirns) im Einklang stehen.[4]

Pathologischen Befund

Dag Moskopp schreibt unter dem Stichwort "Intravitale Autolyse":

Diese neue Möglichkeit einer Langzeitbeatmung von Bewusstlosen hat zu einer neuropathologischen Besonderheit geführt, die vorher in dieser Form nicht bekannt war. Während einer längeren intensivmedizinischen Beatmungsbehandlung kann allen Organen oder Gewebeformationen, dieaußerhalb der knöchernen Umhüllung durch die Schädelkapsel (oder den Wirbelkanal) liegen, der maschinell gespendete Sauerstoff zukommen, wodurch die Organe auch bei fehlender Eigenatmung vital bleiben. Dagegen kann infolge einer krankhaften Druckerhöhung innerhalb des Schädels (oder des Wirbelkanals) in eben diese Kompartimente kein Blut mehr gelangen. In der Folge zersetzt und verflüssigt sich das Zentralnervensystem bereits, während der 'Patient' noch beatmet in seinem Intensivbett liegt.

Vorstufen zu dieser Hirnverflüssigung sind die starke Ansäuerung des Liquors bzw. Konzentrationsanstiege von Laktat bis weit oberhalb von 9 mmol/l (Überlebende: < 3 mmol/l). Im Extremfall entwickeln sich Zustände, in denen bei der Obduktion nach der Öffnung des Schädels üerhaupt kein Gehirn mehr vorgefunden wurde, etwa weil es im weitestgehenden Falle in den Wirbelkanal oder, bei der Leichenöffnung, sonst wohin geflossen ist.[5]

Im "Handbuch gerichtliche Medizin" von Bernd Brinkmann und Burkhard Madea (Hg.) heist es zur Autolyse des Gehirns nach Hirntod auf Seite 414: {{Zitat|Man hat für diese Läsionen den Ausdruck "Respiratorgehirn" eingeführt. ... Die Termini "Hirntod," "cerebral death," "brain death," "mort du cerveau" beziehen sich mehr auf einen pathomorphologischen Zustand.
Makroskopischer Befund
Bei der Eröffnung der straff gespannten Dura mater drängt sich das weiche, geschwollene, grau-grün verfärbte Hirngewebe prolapsartig nach außen. Das Gehirngewicht ist gewöhnlich höher als in einer Kontrollgruppe. Die Konsistenz des Hirngewebes ist herabgesetzt, das Gewebe fühlt sich weich und gelatinös an, es reißt leicht ein, v.a. bei der Entnahme aus der Schädelhöhle. Die starke Blutfülle der Gefäße ist augenfällig. Das Hirngewebe ist geschwollen, ausgeprägte Hirndruckzeichen liegen in der Regel vor. Der infratentorielle Teil des Hirngewebes ist besonders weich und verletzlich. In manchen Fällen besteht das deformierte Hirngewebe aus einer weichen, fast zerfließenden Masse.
Die Fixation des Gehirns in Formaldehyd führt nicht zur üblichen Härtung, das Gewebe bleibt weich-gelatinös und reißt leicht ein. Die übliche Zerlegung des Großhirns in Frontalscheiben bereitet deshalb Schwierigkeiten, die Gewebeblöcke haben eine feuchte und spiegelnde Oberfläche. Die Markrindengrenze stellt sich undeutlich dar, ...
Zeichen der primären traumatischen Läsionen können vorhanden beblieben sein, meist überwiegen jedoch ausgeprägte autolytische Alterationen. ... Eine Korrelation zwischen der Länge er künstlichen Beatmung und dem Ausmaß der autolytischen Veränderung besteht i. Allg. nicht.
Bei einigen Beobachtungen von [298] lag eine totale Nekrose des Gehirns, verbunden it einer subtotalen Nekkrose des Rückenmarks, vor, sodass man vom Tod des ZNS sprechen konnte. In der Regel besteht zwischen dem autolytischen Gehirn und dem fast intakten Rückenmark ein ins Auge fallender Kontrast.
Mikroskopischer Befund
Die histologische Untersuchung des Gehirns ist wegen des Zerfalls des Hirngewebes sehr schwierig. Es kann zu einer völligen Desintergration des Hirngewebes mit zellfreien Arealen kommen. Die Schichtung des Kortex ist i.Allg. erkennbar, die schwerste Gewebsveränderungen finden sich meist in tieferen Rindenschichten. Die Körnerzellschicht des Kleinhirns zeigt oft einen totalen Untergang bei stellenweise noch erhaltenen Purkinje-Zellen. In einigen Anteilen des Gehirns können noch Reste ischämscher Nervenzellschäden vorhanden sein.[6] Auf Seite 415 heißt es weiter:


Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003. Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003. Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003. Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003.

Diskussion

Die Autolyse des Gehirns nach Eintritt des Hirntodes wird zuweilen bestritten. Als Argument wird dabei die Studie von F.M. Wijdicks und Eric A. Pfeifer verwiesen, veröffentlicht in der Neurology.[7] Im Abstract dieser Studie heißt es, dass an 41 Hirntoten diese Untersuchungen vorgenommen wurde.[Anm. 4] Als Ergebnis wurde festgestellt: Es wurden 12 Gehirne mit weniger als 12 Stunden nach dem Herzstillstand fixiert, 29 Gehirne zwischen 12 und 36 Stunden nach dem Herzstillstand. Der Stirnlappen, der Schläfenlappen, der Parietallappen, der Hinterhauptlappen und die Basalganglien zeigten eine moderate bis schwere ischämische Veränderung in 53 bis 68% der Fälle. Mäßige bis schwere neuronale ischämische Veränderung wurde im Thalamus in 34%, Mittelhirn in 37%, Pons in 41%, Medulla in 40% und Cerebellum in 52% der Fälle gefunden. Hieraus folgert man: Bei einer Reihe von Hirntoten zeigten sich keine unverwechselbaren neuropathologischen Merkmale. Neuronale ischämische Veränderungen waren häufig tiefgründig, aber milde Veränderungen waren in einem Drittel der untersuchten Hemisphären und in der Hälfte des Gehirns vorhanden. Umfangreiche ischämische neuronale Schäden und Fragmentierung von Gewebe wurde nicht beobachtet. Die neuropathologische Untersuchung ist daher nicht diagnostisch für den Hirntod.[Anm. 5]

Studien haben in der Naturwissenschaft sehr großes Gewicht. Wichtig ist, die Durchführung der Studie wie auch die Aussagekraft der Ergebnisse genau zu prüfen. So muss an dieser Studie - gemessen an den deutschen Richtlinien zur Feststellung des Hirntodes - doch einige Punkte sind an der Studie lückenhaft:

  1. Differenzierung in primäre und sekundäre Hirnschädigung
    In Deutschland wird bei der HTD zwischen primärer und sekundärer Hirnschädigung unterschieden: Bei primärer Hirnschädigung müssen zwischen 1. und 2. klinischer Diagnostik mind. 12. Stunden liegen, bei sekundärer Hirnschädigung mind. 72 Stunden. - Es ist unklar, ob die US-Bundesstaaten eine ähnliche Differenzierung haben. Wenn ja, dann lag ein Hirntoter mit sekundärerer Hirnschädigung schon über 72 Stunden (= 3 Tage) als Hirntoter auf der Intensivstation, ehe die künstliche Beatmung abgeschaltet wurde.
  2. Zeitdauer: 12-36 Stunden
    Die Zeitdauer von 12-36 Stunden kann für diese Fragestellung noch zu kurz sein, um die Autolyse pathologisch festzustellen. Unklar ist, wie es zur Feststellung des Hirntodes kam (gemessen an der deutschen Richtlinie): Wurde die Wartezeit durch bildgebende Untersuchungen verkürzt? Es ist nur angegeben, dass es 12-36 Stunden nach Herzstillstand erfolgte.
  3. Möglichkeit der DCD
    In den USA ist DCD zugelassen. Dabei geht man davon aus, dass ein Herzstillstand von mind. 10 Minuten dem Hirntod auslöst. Hernach ist keine eigene HTD notwendig. Die 10 Minuten Herzstillstand wird mit der Feststellung des Hirntodes gleichgesetzt. Wenn Hirntote nach DCD in diese Studie kamen, dann verfälschen sie das Ergebnis, da die Gehirnzellen nach 10 Minuten noch nicht völlig abgestorben sind, sondern sich noch im Penumbra befinden, jedoch so schwer ischämisch so schwer geschädigt sind, dass sie sich davon nicht mehr erholen werden.
  4. Hirninfarkt
    Bei einem Hirninfarkt verschließt ein Thrombus ein das Gehirn versorgende Blutgefäß. Die daran angeschlossenen Gehirnzellen werden damit nicht mehr mit Sauerstoff versorgt. Wenn nicht in den ersten Stunden der Thrombus aufgelöst oder entfernt werden kann, sterben diese Gehirnzellen ab. Bis zum Lebensende können Hirninfarkte durch "Löcher" im Kopf nachgewiesen werden. (Nachweis durch Literatur folgt noch)

Bezeichnend ist aus diesem Abstract: Die Gesamtnekrose kann makroskopisch als düsteres graubraunes Großhirn auftreten und Teile können bei Autopsie zerfallen.[Anm. 6] Damit ist deutlich ausgesagt, dass die noch vorhandene Gehirnstruktur nicht mehr diese ist, wie sonst üblich.

Der Schlusssatz des Abstracts lautet: "Obwohl die Existenz eines spezifischen pathologischen Hirnbefundes bei Hirntod [respirator brains] nicht widerlegt ist, ist es für den Neuropathologen mit dem scheinbaren Verschwinden der Gesamthirnnekrose viel schwieriger geworden, den Hirntod zu bestätigen."[Anm. 7]

Anhang

Anmerkungen

  1. Bei jedem Schlaganfall und jedem Hirninfarkt sterben Gehirnzellen ab, aber nur einige Tausend bzw. einige Millionen. Daher können die benachbarten Gehirnzellen, die dies überlebt haben, die Funktion der abgestorbenen Gehirnzellen übernehmen. Dies wird durch Erlernen der verlorengegangener Fähigkeit erreicht. Stehen jedoch in dieser Region zu wenig noch funkionierende Gehirnzellen für die Übernahme der verlorengegangener Funktion zur Verfügung, bleibt der Schaden dauerhaft bestehen, bleibt z.B. der Patient dauerhaft halbseitig gelähmt.
    Da beim Hirntod das ganze Gehirn betroffen ist, stehen keine lebenden Gehirnzellen zur Verfügung, die die Funktionen der abgestorbenen Gehirnzellen übernehmen könnten. Im ganzen Gehirn ist wahrlich das Licht ausgegangen.
  2. In der med. Fachsprache Autolyse genannt.
  3. Dag Moskopp beschreibt dies auf Seite 75 näher: "Die klinischen Befunde werden alle ähnlich beschrieben: plötzlich erlöschender Atemantrieb, tiefes Koma, Reflexlosigkeit, Poyurie, dekompensierende arterielle Hypotension, Hypothermie, Tracheotomie, Beatmung. Bei allen Angiographien brach das Kontrastmittel beider Carotides internae an der Schädelbasis ab. Eine Asystolie erfolgte bei den jeweiligen Patienten nach 2 bis 26 Tagen. Bei der Obduktion fanden sich keine Obstruktionen der Hirnschlagadern, bei allen Verstorbenen kamen Subarachnoibalblutungen unterschiedlicher Genese zur Darstellung sowie intravitale Hirnautolysezeichen."
  4. "... in 41 patients who fulfilled the clinical criteria of brain death."
  5. "Results: After the clinical diagnosis of brain death and terminal cardiac arrest, 12 brains were fixated in less than 12 hours and 29 brains were fixated between 12 and 36 hours. The frontal lobe, temporal lobe, parietal lobe, occipital lobe, and basal ganglia showed moderate to severe ischemic change in 53 to 68% of the cases. Moderate to severe neuronal ischemic change was found in the thalamus in 34%, midbrain in 37%, pons in 41%, medulla in 40%, and cerebellum in 52% of the cases.
    Conclusions: No distinctive neuropathologic features were apparent in our series of patients with brain death. Neuronal ischemic changes were frequently profound, but mild changes were present in a third of the examined hemispheres and in half of the brainstems. Respirator brain with extensive ischemic neuronal loss and tissue fragmentation was not observed. Neuropathologic examination is therefore not diagnostic of brain death. Neurology ® 2008;70:1234–1237"
  6. Total necrosis may appear macroscopically as a dusky gray–brown cerebrum and parts may disintegrate at autopsy.
  7. Although the existence of a separate entity such as the respirator brain has not been reconciled, with the virtual disappearance of total brain necrosis it has become much less likely for the neuropathologist to confirm brain death.

Einzelnachweise

  1. a b c Dag Moskopp: Hirntod, 74f.
  2. Heinz Angstwurm: Hirntod – Bedingung von Organspenden nach dem Tod. In: In: Arnd T. May, Hartmut Kreß, Tosten Verrel, Till Wagner (Hg.): Patientenverfügungen. Handbuch für Berater, Ärzte und Betreuer. Heidelberg 2015, 283.
    S. Robert Snodgrass: The Evolution of Brain Death. In: Pediatric Neurology 51 (2014), 478.
  3. Victor W. Lee, Robert M. Hauck, Mary C. Morrison, Tien T. Peng, Edward Fischer und Anthony Carter (Section of Nuclear Medicine and Section of Neurosurgery, Boston City Hospital, Boston University School of Medicine, Boston, Massachusetts): Scintigraphic Evaluation of Brain Death: Significanceof Sagittal Sinus Visualization. In: J Nucl-Med 28:1279-1283,1987. Nach: http://jnm.snmjournals.org/content/28/8/1279.full.pdf Zugriff am 19.5.2017.
  4. S. Robert Snodgrass: The Evolution of Brain Death. In: Pediatric Neurology 51 (2014), 478.
  5. Dag Moskopp: Hirntod, 73.
  6. Bernd Brinkmann, Burkhard Madea (Hg.): Handbuch gerichtliche Medizin. Berlin 2003, 414.
  7. F.M. Wijdicks, Eric A. Pfeifer: Neuropathology of brain death in the modern transplant era. In: Neurology 2008. 70. 1234-1237. (06.02.2008)