Spinale Reflexe: Unterschied zwischen den Versionen

Aus Organspende-Wiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 4: Zeile 4:


=== Allgemeines ===
=== Allgemeines ===
Bis ein Sinnreiz im Gehirn ankommt, dort verarbeitet wird und eine Bewegungsantwort ausgelöst wird, dauert es einige Zehntelsekunden. Das kann zu lange dauern. Das Rückenmark hat daher für schnelle Antworten die [[spinalen Reflexe]]. Die sogenannten [[Reflexbogen]] funktionieren ohne Gehirn.<ref>Henning Beck, Sofia Anastasiadou, Christopher Meyer zu Reckendorf: Faszinierendes Gehirn. Eine bebilderte Reise in die Welt der Nervenzellen. Heidelberg 2016, 21.</ref> Die Reflexbögen reichen weit in die [[Evolution]] zurück, als die ersten Lebewesen zwar ein [[Nervensystem]] hatten, aber noch kein Gehirn. Daher funktionieren die [[Reflexe]] auch ohne Gehirn.


"Auch nach Eintreten des Hirntodes können spontan oder als Reaktion auf äußere Reize noch Bewegungen der Extremitäten und des Rumpfes auftreten. Diese Phänomene haben nicht nur bei Angehörigen, beim ärztlichen und Pflegepersonal, sondern auch in den öffentlichen Medien immer wieder zu starken Verunsicherungen geführt. ...<br>
{{Zitat|Auch nach Eintreten des Hirntodes können spontan oder als Reaktion auf äußere Reize noch Bewegungen der Extremitäten und des Rumpfes auftreten. Diese Phänomene haben nicht nur bei Angehörigen, beim ärztlichen und Pflegepersonal, sondern auch in den öffentlichen Medien immer wieder zu starken Verunsicherungen geführt. ...<br>
Die beobachteten Phänomene finden ihre Erklärung in einem Wegfall hemmender Einflüsse des Gehirns auf das Rückenmark im Hirntod. Dies führt zu einer 'Enthemmung' spinaler Reflexschablonen, wie sie auch - nach einem vorübergehenden Schockzustand mit Areflexie - bei einer Querschnittslähmung beobachtet wird. Es spricht nicht gegen den Hirntod, sondern ist geradezu für diesen typisch, wenn die Muskeleigenreflexe normal und sogar gesteigert auslösbar sind. Ein solcher Befund findet sich bei bis zu 75% aller Hirntoten.<br>
Die beobachteten Phänomene finden ihre Erklärung in einem Wegfall hemmender Einflüsse des Gehirns auf das Rückenmark im Hirntod. Dies führt zu einer 'Enthemmung' spinaler Reflexschablonen, wie sie auch - nach einem vorübergehenden Schockzustand mit Areflexie - bei einer Querschnittslähmung beobachtet wird. Es spricht nicht gegen den Hirntod, sondern ist geradezu für diesen typisch, wenn die Muskeleigenreflexe normal und sogar gesteigert auslösbar sind. Ein solcher Befund findet sich bei bis zu 75% aller Hirntoten.<br>
Zu entsprechenden Reaktionen kann es auch nach Abstellen des Beatmungsgerätes kommen; ... Als zusätzliche Ursache wird eine Reizung der Nervenzellen des [[Rückenmark]]es durch den plötzlich auftretenden Sauerstoffmangel angesehen.<br>
Zu entsprechenden Reaktionen kann es auch nach Abstellen des Beatmungsgerätes kommen; ... Als zusätzliche Ursache wird eine Reizung der Nervenzellen des [[Rückenmark]]es durch den plötzlich auftretenden Sauerstoffmangel angesehen.<br>
So befremdlich und vielleicht erschreckend derartige Phänomene auch für Außenstehende sein mögen, sie entstehen zweifelsfrei außerhalb des Gehirns und damit jeglichen Bewusstseins auf der Ebene von [[Rückenmark]], Nerven und Muskulatur. Sie haben mit dem personalen Leben des Menschen nichts mehr zu tun."<ref>Hans-Peter Schlake, Klaus Roosen: Der Hirntod als der Tod des Menschen. 2. Auflage. Neu-Isenburg 2001, 65.</ref>
So befremdlich und vielleicht erschreckend derartige Phänomene auch für Außenstehende sein mögen, sie entstehen zweifelsfrei außerhalb des Gehirns und damit jeglichen Bewusstseins auf der Ebene von [[Rückenmark]], Nerven und Muskulatur. Sie haben mit dem personalen Leben des Menschen nichts mehr zu tun.<ref>Hans-Peter Schlake, Klaus Roosen: Der Hirntod als der Tod des Menschen. 2. Auflage. Neu-Isenburg 2001, 65.</ref>}}
 
 


=== Nervensystem im Rückenmark ===
=== Nervensystem im Rückenmark ===

Version vom 1. Januar 2019, 08:11 Uhr

Ein Reflex ist eine unwillkürliche, stets gleich verlaufende Antwort eines Organs (z.B. Muskel) auf einen bestimmten Reiz (z.B. Dehnung). Ein Reflex wird immer über das ZNS vermittelt. Anatomische Grundlagen der Reflexe sind Reflexbögen.[1]
Ein Reflex ist eine zweckgerichtete, stereotypische Antwort auf einen definierten Reiz unter gleichbleibenden Bedingungen. Reflexe dienen der Stabilisierung eines Zustands oder Vorgangs. Bei spinalen Reflexen liegt das Reflexzentrum im Rückenmark.[2]

Allgemeines

Bis ein Sinnreiz im Gehirn ankommt, dort verarbeitet wird und eine Bewegungsantwort ausgelöst wird, dauert es einige Zehntelsekunden. Das kann zu lange dauern. Das Rückenmark hat daher für schnelle Antworten die spinalen Reflexe. Die sogenannten Reflexbogen funktionieren ohne Gehirn.[3] Die Reflexbögen reichen weit in die Evolution zurück, als die ersten Lebewesen zwar ein Nervensystem hatten, aber noch kein Gehirn. Daher funktionieren die Reflexe auch ohne Gehirn.

Auch nach Eintreten des Hirntodes können spontan oder als Reaktion auf äußere Reize noch Bewegungen der Extremitäten und des Rumpfes auftreten. Diese Phänomene haben nicht nur bei Angehörigen, beim ärztlichen und Pflegepersonal, sondern auch in den öffentlichen Medien immer wieder zu starken Verunsicherungen geführt. ...

Die beobachteten Phänomene finden ihre Erklärung in einem Wegfall hemmender Einflüsse des Gehirns auf das Rückenmark im Hirntod. Dies führt zu einer 'Enthemmung' spinaler Reflexschablonen, wie sie auch - nach einem vorübergehenden Schockzustand mit Areflexie - bei einer Querschnittslähmung beobachtet wird. Es spricht nicht gegen den Hirntod, sondern ist geradezu für diesen typisch, wenn die Muskeleigenreflexe normal und sogar gesteigert auslösbar sind. Ein solcher Befund findet sich bei bis zu 75% aller Hirntoten.
Zu entsprechenden Reaktionen kann es auch nach Abstellen des Beatmungsgerätes kommen; ... Als zusätzliche Ursache wird eine Reizung der Nervenzellen des Rückenmarkes durch den plötzlich auftretenden Sauerstoffmangel angesehen.
So befremdlich und vielleicht erschreckend derartige Phänomene auch für Außenstehende sein mögen, sie entstehen zweifelsfrei außerhalb des Gehirns und damit jeglichen Bewusstseins auf der Ebene von Rückenmark, Nerven und Muskulatur. Sie haben mit dem personalen Leben des Menschen nichts mehr zu tun.[4]


Nervensystem im Rückenmark

Spinale Reflexe

Spinale Reflexe sind unbedingte Reflexe, die im Gegensatz zu den erworbenen bedingten Reflexen genetisch determiniert sind.[2]
Viele periphere vegetative Neurone sind spontan aktiv; die Effektorzellen werden durch Erhöhung und Erniedrigung dieser Aktivität beeinflusst.[5]
Viele Typen von vegetativen Neuronen sind unter Ruhebedingungen spontan aktiv (z.B. Vasokonstrikorneurone, Kardiomotoneurone, Sudomotoneurone, mortilitäsregulierende Neurone zu den Eingeweiden). Andere werden nur unter speziellen Bedingungen aktiviert. Die Spontakaktivität ist wichtig für die Regulation der Durchblutung von Organen, des peripheren Widerstandes und des Herzminutenvolumens. ... Die Spontanaktivität in den vegetativen Neuronen hat ihren Ursprung in Hirnstamm und Rückenmark."[5]
Das von supraspinalen Einflüssen isolierte Rückenmark ist duch seine vegetative spinale Reflexmotorik zu vielen residuellen Leistungen fähig.[6]
Die spinalen parasympathischen und sympathischen Systeme unterliegen hemmenden und erregenden Einflüssen von Hirnstamm und Hypothalamus. Dort werden die spinalen Systeme zu Funktionskomplexen höherer Ordnung organisiert".[7]
Die spinale vegetative Reflexmotorik ist in die suprasinal organisierten vegetativen Regulationen integriert. Sie funktioniert auch nach Durchtrennung des Rückenmarks im chronischen Zustand.[8]

Das Verhältnis von Motoneuronen zu Interneuronen im Rückenmark beträgt etwa 1:30.[9]


Muskeldehnungsreflexe

Muskeldehnungsreflexe sind Eigenreflexe, die der Lagestabilisierung dienen. Sie sind teils phasischer (monosynaptisch verschaltet), teils tonischer Natur (meist di-, aber auch poysynaptisch verschaltet). Sie sind die einfachsten spinalen Reflexe. Da Sensor und Effektor den gleichen Muskel betreffen, sind sie Eigenreflexe.[10]

Muskeldehnungsreflexe sind die einfachste Form eines Reflexes, der bei plötzlicher Dehnung eines Muskels reflektorisch zu seiner raschen Kontraktion führt.[11]

Einfluss des Hirnstamms

Regelkreise, die den Hirnstamm einbeziehen, ermöglichen die aufrechte Körperhaltung und weitere stützmotorische Funktionen.[12]

Durch Einbeziehung von motorischen Zentren im Hirnstamm wird das Gleichgewicht gehalten.[12]

Hemmungungen

Die Renshaw-Hemmung im Rückenmark dient dazu, die Aktivität der Motoneuronen zu bremsen und so eine überschießende Antwort auf einen Reiz zu verhindern. Ein Ausschalten dieser Hemmung, z.B. im Rahmen einer Tetanus-Erkrankung (= Wundstarrkrampf) führt dann zu erhöhter motorischer Aktivitätsbereitschaft: überschießende Reflexe schon bei kleinsten Reizen, Trismus (Kieferklemme), Opisthotonus (Überstrecken des Rumpfes). Mit Hilfe der Renshaw-Hemmung kann die Muskelkraft an unterschiedliche Erfordernisse angepasst werden.[13]

Neben der Renshaw-Hemmung gibt es auf der Ebene des Rückenmarks noch die präsynaptische Hemmung.[14]

"Die spinalen parasympathischen und sympathischen Systeme unterliegen hemmenden und erregenden Einflüssen von Hirnstamm und Hypothalamus. Dort werden die spinalen Systeme zu Funktionskomplexen höherer Ordnung organisiert, wie z.B. das kutane Vasokonstriktorsystem und der Sudomotorsystem im Rahmen der Thermoregulation, die Vasokonstriktorsysteme zu Widerstandsgefäßen (im Skelettmuskel und im Viszeralbereich) und die sympathischen Kardiomotoneurone im Rahmen der Regulation des arteriellen Blutdrucks."[15]

Eine Hyperreflexie ist auch bei Funktionsstörungen der deszendierenden zentralen Bahnen (z.B. nach einem Infarkt im motorischen Kortex wegen fehlender präsynaptischer Hemmung zu beobachten. Die pathophysiologisch gesteigerten Eigenreflexe werden dann von einer Erhöhung des Muskeltonus (Spastizität) begleitet.[16]

Anatomie der Reflexe

Wirbelsäule des Menschen

Spinale Reflexe (lat. spinalis = Rückenmark)[17] sind vom Rückenmark ausgehende Reflexe. Sie sind benannt nach den 5 Abschnitten der Wirbelsäule:[18]

  • Halswirbel (Pars cervicalis) 8 Segmente (C1–C8):
    Die in diesem Bereich austretenden Nerven sind zuständig für:
    • C1 = Kopf, Gesicht, Blutzufuhr zum Kopf, Gehirn, Ohren, Sympaathikus
    • C2 = Gesichtshöhlen Augen, Stirn, Zunge, Sehnerv
    • C3 = Wangen, Zähne, Ohren, Gesichtsknochen
    • C4 = Mund, Lippen, Nase, Ohrtrompete
    • C5 = Stimmbänder, Rachenhöhle, Halsdrüsen
    • C6 = Halsmuskel, Mandeln, Schulter
    • C7 = Schulterschleimbeutel, Ellenbogen, Schilddrüse
  • Brustwirbel (Pars thoracica) 12 Segmente (Th1–Th12):
    Die in diesem Bereich austretenden Nerven sind zuständig für:
    • Th1 = Unterarm und Hand, Luftröhre, Speiseröhre
    • Th2 = Herzklappen, Herzkranzgefäße, Arme
    • Th3 = Brustkorb, Lunge, Brüste, Bronchien, Arme
    • Th4 = Gallenblase, Gallengänge
    • Th5 = Leber, Blut, Sonnengeflecht
    • Th6 = Magen, Knie
    • Th7 = Zwölffingerdarm, Pankreas
    • Th8 = Milz, Zwerchfell, Knie
    • Th9 = Nebennieren
    • Th10 = Nieren
    • Th11 = Harnröhren, Nieren
    • Th12 = Dünndarm, Eileiter, Blutkreislauf, Arm
  • Lendenwirbel (Pars lumbalis) 5 Segmente (L1–L5):
    Die in diesem Bereich austretenden Nerven sind zuständig für:
    • L1 = Dickdarm, Arm
    • L2 = Bauch, Oberschenkel, Blinddarm
    • L3 = Geschlechtsorgane, Blase, Knie
    • L4 = Ischias-Nerv, untere Rückenmuskeln, Prostata
    • L5 = Bein, Fußknöchel, Fuß, Hüfte, Gesäß, Mastdarm, After
  • Kreuzbein (Pars sacralis): 5 Segmente (S1–S5)
    Die in diesem Bereich austretenden Nerven sind zuständig für: Hüftgelenk, Gesäß
  • Steißbein (Pars coccygis): 1 Segment (Co1)
    Die in diesem Bereich austretenden Nerven sind zuständig für: Mastdarm, After

Querschnitt-Syndrom

"Als Querschnittslähmung bezeichnen wir ein Syndrom, bei dem alle Strukturen des Rückenmarks auf einer Höhe geschädigt sind. Bei kompletter Querschittlähmung ist die zentrale Steuerung aller Funktionen des Rückenmarks unterhalb der Läsion aufgehoben, bei inkompletter ist sie teilweise erhalten."[19]

Ein komplettes Querschnitt-Syndrom ist eine vollständige und irreversible Unterbrechung aller spinalen Bahnen. Ein hohes Querschnitts-Syndrom ist teilweise mit dem Hirntod vergleichbar. So tritt bei einem Querschnitt oberhalb C4 eine Atemlähmung ein, da der Atemimpuls vom Hirnstamm nicht mehr zum Zwerchfell und Oberkörper kommt. Unterhalb des Querschnittes ist der Körper gegenüber allen Reizen unempfindlich (Sensibilitätsausfall).[20]

Setzt die Querschnittlähmung plötzlich ein, kommt es zum spinalen Schock. Dabei ist die motorische Lähmung komplett, die Eigenreflexe erloschen. In den Hautbezirken unterhalb der Läsion ist das spontane Schwitzen aufgehoben (thermoregulatorische Anhidrosis). [19]


Spinale Automatismen

Bei vollständiger und auch bei partieller Querschnittslähmung des Rückenmarks werden Querverbindungen zwischen sensiblen oder autonomen und motorischen Bahnen beider Seiten aktiviert. Exterozeptive Stimuli, z.B. Berührungen, Lagewechsel der Gliedmaßen, aber auch enterozeptive Reize (Blasenfüllung) unterhalb der Läsion lösen über diese Verbindungen Beugesynergien oder gekreuzte Beuge- und Strecksynergien, manchmal auch anatomische Laufbewegungen der Beine aus. Diese spinalen Automatismen werden leicht mit Willkürbewegungen verwechselt. Tatsächlich entstehen sie rein reflektorisch. Deshalb ist ihre Bezeichnung als Automatismen nicht korrekt. Sie sind als Rückschritt auf phylogenetisch und ontogenetisch früher Bewegungsformen aufzufassen, die im Rückenmark organisiert sind, beim Menschen im Laufe der Zerebralisation aber unterdrückt wurden.[19]

Anhang

Anmerkungen


Einzelnachweise

  1. Martin Trepel: Neuroanatomie. Struktur und Funktion. 7. Auflage. München 2017, 93.
  2. a b Frank Lehmann-Horn: Motorische Systeme. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 146.
  3. Henning Beck, Sofia Anastasiadou, Christopher Meyer zu Reckendorf: Faszinierendes Gehirn. Eine bebilderte Reise in die Welt der Nervenzellen. Heidelberg 2016, 21.
  4. Hans-Peter Schlake, Klaus Roosen: Der Hirntod als der Tod des Menschen. 2. Auflage. Neu-Isenburg 2001, 65.
  5. a b Wilfrid Jänig: Vegetatives Nervensystem. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 454.
  6. Wilfrid Jänig: Vegetatives Nervensystem. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 456.
  7. Wilfrid Jänig: Vegetatives Nervensystem. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 456.
  8. Wilfrid Jänig: Vegetatives Nervensystem. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 457.
  9. Heiko J. Luhmann: Sensomotorische Systeme: Körperhaltung und Bewegung. In: Hans-Christian Pape, Armin Kurtz, Stefan Silbernagl: Physiologie. 7. Auflage. Stuttgart 2014, 829.
  10. Frank Lehmann-Horn: Motorische Systeme. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 149.
  11. Heiko J. Luhmann: Sensomotorische Systeme: Körperhaltung und Bewegung. In: Hans-Christian Pape, Armin Kurtz, Stefan Silbernagl: Physiologie. 7. Auflage. Stuttgart 2014, 824.
  12. a b Frank Lehmann-Horn: Motorische Systeme. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 160.
  13. Hans-Christian Pape, Armin Kurtz, Stefan Silbernagl: Physiologie. 7. Auflage. Stuttgart 2014, 831.
  14. Heiko J. Luhmann: Sensomotorische Systeme: Körperhaltung und Bewegung. In: Hans-Christian Pape, Armin Kurtz, Stefan Silbernagl: Physiologie. 7. Auflage. Stuttgart 2014, 832.
  15. Wilfrid Jänig: Vegetatives Nervensystem. In: Robert F. Schmidt, Florian Lang (Hg.): Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Heidelberg 2007, 456.
  16. Heiko J. Luhmann: Sensomotorische Systeme: Körperhaltung und Bewegung. In: Hans-Christian Pape, Armin Kurtz, Stefan Silbernagl: Physiologie. 7. Auflage. Stuttgart 2014, 838.
  17. Pschyrembel: Medizinisches Wörterbuch. spinal. Seite 1566.
  18. http://de.wikipedia.org/wiki/R%C3%BCckenmark#Gliederung Zugriff am 8,3.2014.
  19. a b c Ricarda Diem, Werner Hacke, Stefan Schwab, Thorsten Steiner, Michael Strupp: Die neurologische Untersuchung und die wichtigsten Syndrome. In: Werner Hacke (Hg.): Neurologie. Heidelberg 2016, 73.
  20. O.V.: Alles fürs Examen. Das Kompendium für die 2. Ärzteprüfung. Band B. Stuttgart 2014, 909f.