Visuelle Wahrnehmung
Visuelle Wahrnehmung bezeichnet in der Physiologie des Menschen und der meisten Tiere die Aufnahme und Verarbeitung optischer Reize, bei der über Auge und Gehirn eine Extraktion relevanter Informationen, Erkennung von Elementen und deren Interpretation durch Abgleich mit Erinnerungen stattfindet. Somit geht die visuelle Wahrnehmung weit über das reine Aufnehmen von Information hinaus.
Signale zum Sehzentrum
Von der Netzhaut gehen die Informationen beider Augen über Millionen Fasern der beiden Sehnerven zur "Kreuzung". Durch den dort erfolgten Signalvergleich ist uns räumliches Sehen möglich. Wir können Entfernungen abschätzen. Danach gehen die Informationen weiter zum Thalamus. In Absprache mit höheren Netzwerken entscheidet der Thalamus, welche Informationen zum Großhirn dürfen. Rund 1 Mio. Neuronen im Thalamus beschäftigen sich mit den visuellen Informationen. Im Sehzentrum verarbeiten rund 200 Mio. Neuronen die weitergeleiteten Informationen.[1]
Sehzentrum
Das Sehzentrum (Visueller Kortex) im Hinterkopf enthält keine neuronalen Detektoren für Punkte, sondern nur für Striche. Damit arbeitet unser Sehzentrum nicht pixelorientiert, sondern vektororientiert. Auf hierarchisch höherer Ebene synthetisieren hochkomplexe Neuronen aus den von den primären Detektoren gelieferten Einzelinformationen ein "L" oder ein "X".
Für die Gesichtserkennung gibt es kein "Schwiegermutterneuron", an dem die Schwiegermutter erkannt wird. Statt dessen wird anhand gespeicherter physiognomischer Merkmale (Aussehen von Augen, Mund, Nase und Gesichtszüge) aus dem Gedächtnis abgerufen und in einer "Konvergenzzone" des Gehirns die Teile so lange zu verschiedenen Phantombilder zusammengesetzt, bis das zur Realität passe Bild vor dem "inneren Auge" erscheint. Untersuchungen haben gezeigt, dass dabei auch der zinguläre Kortex (Gyrus cinguli) und das Stirnhirn beteiligt sind.[2]
Ablauf der visuellen Wahrnehmung
Martin Trepel zählt in seinem Buch "Neuroanatomie" jedes einzelne Neuron auf, über die die Informationen von der Netzhaut zur Sehrinde gelangen:[3]
- 1. Neuron
Das 1. Neuron sind die Sinneszellen in der Netzhaut (Retina). Als Zapfen oder Stäbchen nehmen sie das Licht auf und wandeln sie in elektrische Signale um. - 2. Neuron
Das 2. Neuron übernimmt bereits in der Netzhaut eine erste Verarbeitung der elektrischen Signale. Dazu gehören die Horizontalzellen, die Bipolarzellen und die Amakrinen Zellen.[Anm. 1] - 3. Neuron
Das 3. Neuron bildet den Sehnerv (N. opticus). Er führt über die Kreuzung der Sehnerven (Chiasma opticum) weiter zum Corpus geniculatum laterale des Thalamus. Vorher gibt er Kolleteralen zum Hypothalamus, zur Area pretectalis und zum Tectum des Mittelhirns ab. - 4. Neuron
Das 4. Neuron übernimmt im Thalamus das Signal und leitet es in der breit angelegten Sehstrahlung (Radiatio optica) zur Sehrinde fort.
Etwa 90% der Fasern des Sehnervs enden im Thalamus, rund 10% enden im Hypothalamus (Beeinflussung des zirkadianen Rhythmus), der Area pretectalis (Verschaltung des Pupillenreflexes) und den Colliculi superiores des Mittelhirns (Auslösung von Reflexen wie z.B. Lidschluss-Reflex bei plötzlich näher kommenden visuellen Reizen).[3]
Es wird in der Sehbahn zwischen zwei Systemen unterschieden, die von der Netzhaut bis zur Sehrinde parallel verlaufen. Erst dort beginnen sich die beiden funktionellen Systeme topisch voneinander zu trennen:[3]
- Magnozelluläres System
Das magnozelluläre System dient mit seinen großzelligen Neuronen der Wahrnehmung von Bewegungen. - Parvozelluläres System
Das parvozelluläres System arbeitet wie eine Digitalkamera. Es bringt die hochauflösenden, farbigen Informationen zur Sehrinde.
Die Sehrinde wird in eine primäre und eine sekundäre Sehringe unterschieden:[4]
- Primäre Sehrinde
In der Area 17 nach Brodmann erfolgt die zerebrale Bewusstwerdung der visuellen Impulse aus der Netzhaut. Eine Interpretation bzw. ein erkennendes Zuordnen erfolgt hier noch nicht. Rund 80% der primären Sehrinde besitzt die Aufgabe des Scharf-sehens. - Sekundäre Sehrinde
In der Area 18 nach Brodmann liegt die klassische Sehrinde. Sie umfasst Area 17 hufeisenförmig. In Area 18 werden die visuellen Informationen "analysiert und aufgelöst nach Farbe, Größe, Form, Orientierung und Entfernung eines Objekts. Weitere Kortexareale, die an der sekundären Verarbeitung visueller Impulse beteiligt sind, reichen über den Okzipitallappen hinaus in den Parietallappen und bis weit in den ventralen Temporallappen hinein (...). Hier wird die visuelle Information interpretiert und mit gelernten Inhalten verknüpft (z.B. Gegenstände erkennen, Geschwindigkeiten abschätzen, Schrift erkennen/lesen etc.). Einzelnen z.T. eng umschriebenen Bereichen kommen dabei sehr spezifische Aufgaben zu, z.B. das Erkennen von Gesichtern, von bestimmten Formen, von räumlichen Anordnungen, von Farben etc."[4]
Die sekundäre Sehrinde ist u.a. mit dem frontalen Augenfeld im Frontallappen verbunden. Hierüber erfolgt die Ab- und Zuwendung des Blicks und rasche Korrekturbewegungen der Augen.
Die Signale des magnozellulären und parvozellulären Systems werden in der sekundären Sehrinde getrennt für die primäre Sehrinde aufbereitet.[5]
Silbernagel
<ref>Klinke, Hans-Christian Pape, Armin Kurtz, Stefan Silbernagl: Physiologie. 7. Auflage. Stuttgart 2014,
Anhang
Anmerkungen
- ↑ Trepel gibt hierzu an: "Der Verlauf der Sehbahn von der Retina bis zur primären Sehrinde über vier Neurone ist der direkteste und kürzeste denkbare Weg. Da jedoch in der Retina z.T. Zwischenneurone zwischen den bipolaren und den Ganglienzellen geschaltet sind, die z.B. der Kontrastschärfung der visuellen Information dienen (...), hat der intraretinale Anteil der Sehbahn z.T. auch bereits vier Neurone, sodass in manchen Darstellungen die Sehbahn einschließlich der Sehstrahlung auch mit insgesamt fünf Neuronen (5. Neuron im Corpus geniculatum laterale) angegeben wird."
Einzelnachweise
- ↑ Christiane Stenger: Wer lernen will, muss fühlen. Wie unsere Sinne dem Gedächtnis helfen. Reinbeck 2016, 112f.
- ↑ J. Caspar Rüegg: Gehirn, Psyche und Körper. Neurobiologie von Psychosomatik und Psychotherapie. 5. Aufl. Stuttgart 2011, 16.
- ↑ a b c Martin Trepel: Neuroanatomie. Struktur und Funktion. 7. Auflage. München 2017, 234.
- ↑ a b Martin Trepel: Neuroanatomie. Struktur und Funktion. 7. Auflage. München 2017, 236.
- ↑ Martin Trepel: Neuroanatomie. Struktur und Funktion. 7. Auflage. München 2017, 238.